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Carriers of premutation alleles (55–200 CGG repeats) of the fragile-X mental retardation 1 (FMR1) gene are often
regarded as being clinically uninvolved. However, it is now apparent that such individuals can present with one
(or more) of three distinct clinical disorders: mild cognitive and/or behavioral deficits on the fragile-X spectrum;
premature ovarian failure; and a newly described, neurodegenerative disorder of older adult carriers, fragile-X–
associated tremor/ataxia syndrome (FXTAS). Awareness of these clinical presentations is important for proper
diagnosis and therapeutic intervention, not only among families with known cases of fragile-X syndrome but also
more broadly for adults with tremor, gait ataxia, and parkinsonism who are seen in movement-disorders clinics.

Introduction

In their analysis of pedigrees with fragile-X syndrome
(MIM 309550) that exhibited transmission through os-
tensibly normal males, Pembrey et al. suggested that “the
final genetic event that causes the mental retardation syn-
drome is preceded by a mutation that causes no harm
other than predisposing to the final event, in other
words, a ‘premutation’” (Pembrey et al. 1985, p. 713
[our emphasis]). The sequencing of the fragile-X mental
retardation 1 (FMR1) gene in 1991 (Verkerk et al. 1991)
greatly clarified the nature of the “final (genetic) event,”
namely, an expansion of a trinucleotide (CGG)–repeat
element in the 5′ UTR of the FMR1 gene to greater than
∼200 CGG repeats (full mutation) that is generally ac-
companied by methylation-coupled silencing of the gene.
However, the concept of the premutation has remained
imprecise, in part because there is no clear distinction
between premutation and normal alleles and because
premutation alleles do, indeed, cause “harm.” This latter
issue, the forms of clinical involvement associated with
premutation alleles, is the central focus of this review.

The Premutation: A Square Peg in a Round Hole

The concept of the premutation has remained vague on
two counts since Pembrey’s original description. First, the
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various forms of premutation-associated clinical involve-
ment were not generally recognized until well after the
discovery of the gene itself and thus were not used to
define the premutation. In fact, carrier status was often
used to define, categorically, the carrier phenotype as nor-
mal (e.g., “normal transmitting male” [NTM]) despite the
absence of detailed behavioral or cognitive testing. Sec-
ond, following the discovery of the FMR1 gene, the pre-
mutation (allele) was defined by repeat-length instability
leading to expansion to a full mutation (Fu et al. 1991;
Rousseau et al. 1991). However, this definition has re-
mained imprecise, resulting in definitions of the lower
bound of the premutation with a range of 50–60 CGG
repeats. If a premutation allele were defined as having
a degree of repeat instability that can give rise to a full
mutation in a single generation, then the lower end of the
premutation range (i.e, the smallest CGG element known
to satisfy this criterion) could not be 159 repeats (Nolin
et al. 2003). However, significant repeat-length instability
does occur for even smaller repeats in a manner that de-
pends on both the repeat size per se and the number of
AGG interruptions within the CGG tract (Zhong et al.
1995; Crawford et al. 2000; Nolin et al. 2003). Thus, as
discussed by Nolin et al. (2003), for alleles in the range
of ∼50–60 CGG repeats, the risk for expansion is inde-
terminate and can be assessed “only by observing trans-
missions in future generations.”

To address the ambiguity currently associated with the
definition of the premutation, we recommend following
the guidelines of the American College of Medical Ge-
netics (ACMG) (Maddalena et al. 2001), with the lower
bound of the premutation range operationally defined
as a specific size (55 CGG repeats), irrespective of se-
quence composition (i.e., presence or absence of AGG
interruptions). This definition requires neither sequenc-
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ing nor observation of allele transmissions and takes into
consideration all of the inherent uncertainty in the pro-
pensity for expansion discussed by Nolin et al. (2003).
Further, such a definition provides a more consistent
link to the molecular mechanisms that underlie pheno-
typic involvement among premutation carriers and that
may have no direct association with instability/AGG
interruptions per se. Defining the lower bound as 55
CGG repeats also seems prudent in view of the intrinsic
inaccuracy of gel methods for repeat sizing and the con-
tinued need for genetic counseling, as will be seen below.
It is also important to note that several of the large
prevalence studies have used 55 repeats as the lower
bound for the premutation, and the oft-quoted carrier
frequencies, 1:259 females and 1:810 males (Rousseau
et al. 1995; Dombrowski et al. 2002), are based on this
size criterion.

Smaller CGG tracts (∼45–54 CGG repeats) are asso-
ciated with some degree of size instability upon trans-
mission (Zhong et al. 1996; Nolin et al. 2003), with the
possibility of expanding to a full mutation within two
generations. To account for both residual repeat insta-
bility and the possibility of repeat-length–associatedclini-
cal involvement, a gray-zone range of ∼45–54 CGG re-
peats that does not overlap with the premutation range
should be retained, as recommended by the ACMG
(Maddalena et al. 2001).

From the molecular-genetic perspective, the concept of
the premutation/gray zones should probably be scrapped
altogether in favor of one or more continuous scales of
involvement (clinical, genetic, and biochemical); how-
ever, there is a strong legacy for the premutation that
is unlikely to disappear in the short term, at least until
the underlying mechanisms are better understood.

Clinical Involvement among Carriers of Premutation
Alleles

The possibility of clinical involvement in premutation
carriers was initially discounted, since carrier mothers
of children with fragile-X syndrome are typically intel-
lectually normal (Reiss et al. 1993; Bennetto et al. 2001).
However, over the past decade, a number of studies have
documented the fact that a subgroup of female carriers
do have mild physical features of fragile-X syndrome,
such as prominent ears or flexible finger joints (Riddle
et al. 1998; Hagerman et al. 2002b). In addition, some
carriers have emotional problems, including anxiety, ob-
sessional thinking, schizotypy, and/or depression, all of
which can be exacerbated by the stress of raising a child
with fragile-X syndrome (Loesch et al. 1994; Sobesky
1996; Franke et al. 1998; Hagerman et al. 2002b). John-
ston et al. (2001) recently observed that emotional prob-
lems, including depression and interpersonal sensitivity,
were more likely to occur in carrier females with 1100

CGG repeats than in those with !100 repeats. These emo-
tional features appear to be a mild form of the anxiety
and perseverative thinking that occur in those affected
by fragile-X syndrome and may be due to the mild deficit
of FMR1 protein (FMRP) found in the upper half of the
premutation range (Tassone et al. 2000a, 2000c; Ken-
neson et al. 2001). Moreover, Loesch et al. (2003a,
2003b) have reported an association between the pres-
ence and extent of the physical and cognitive phenotypes
and the level of FMRP, in both males and females, that
begins in the premutation range and extends into the
full mutation range.

Two additional studies have documented more severe
clinical involvement, including mental retardation and
autism-spectrum disorders, among children with pre-
mutation alleles. Tassone et al. (2000d) first reported
lowered FMRP levels in some children with the premu-
tation who presented with mental retardation and/or
autism. The association between clinical involvement
and protein level suggested that these forms of involve-
ment are on the fragile-X syndrome–spectrum (i.e., se-
verity of clinical involvement is related to relative protein
deficit). These forms of involvement may be more com-
mon in male carriers; Aziz et al. (2003) noted the frequent
occurrence of either learning disabilities or autism-spec-
trum disorder in 15 boys with the premutation.

Unlike the forms of clinical involvement described
above, a disorder that is unique to the premutation range
is premature ovarian failure (POF [MIM 311360]), the
cessation of menses before age 40, which is seen in
∼20% of females who carry premutation alleles (Al-
lingham-Hawkins et al. 1999; Marozzi et al. 2000). For
those who have not yet gone through menopause, sub-
clinical ovarian dysfunction leading to elevated FSH is
seen in 25% of adult female carriers aged !40 years
(Hundscheid et al. 2001). The finding of a clinical fea-
ture (POF) that is particular to female carriers of pre-
mutation alleles brought focus to the possibility of a
specific form of molecular dysfunction in the premu-
tation range.

Fragile-X–Associated Tremor/Ataxia Syndrome

A second form of clinical involvement, recently identified
among older male carriers of premutation alleles (Hag-
erman et al. 2001), consists of progressive intention
tremor, gait ataxia, parkinsonism, and autonomic dys-
function and has been designated “fragile-X–associated
tremor/ataxia syndrome” (FXTAS) (Berry-Kravis et al.
2003; Jacquemont et al. 2003; Leehey et al. 2003). As-
sociated features include peripheral neuropathy with de-
creased sensation and vibration sense in the distal lower
extremities, as well as cognitive deficits involving loss of
memory and executive function. The most consistent
neuroradiological feature associated with FXTAS in-
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volves symmetric hyperintensities on T2-weighted MR
images of the middle cerebellar peduncles (Brunberg et
al. 2002). More recently, Greco et al. (2002) identified
eosinophilic, intranuclear inclusions in neurons and as-
trocytes throughout the brain in postmortem samples
from four adult male premutation carriers with FXTAS
(see the “FXTAS Represents a New Class of Inclusion
Disorder” section). Diagnostic criteria for FXTAS have
been presented by Jacquemont et al. (2003) and are de-
scribed in the appendix; the presence of the pathogno-
monic, eosinophilic, intranuclear inclusions has been
added as a (postmortem) criterion for definite FXTAS.

Although most female premutation carriers do not ap-
pear to develop FXTAS (Berry-Kravis et al. 2003; Jac-
quemont et al. 2004b), a small number do suffer from
this disorder, with intranuclear inclusions present in the
single (female) postmortem case examined to date (Hag-
erman et al. 2004). One possible explanation for this dif-
ference is the partial protection afforded by random X
inactivation of the premutation allele; however, there may
be additional sex-specific effects that reduce penetrance
among females. Larger-scale screens are required to more
precisely determine both the frequency and characteris-
tics of penetrance among females.

A critical issue with regard to FXTAS is the fact that
it took so long to identify the disorder, even though frag-
ile-X syndrome has been recognized for 125 years, and
the FMR1 gene itself for 112 years. One explanation for
this is that fragile-X syndrome is principally identified as
a childhood (neurodevelopmental) disorder without sig-
nificant progression in adulthood. Moreover, male car-
riers (i.e., NTMs) of premutation alleles were thought
not to experience any clinical abnormality. Thus, the
movement disorders experienced by the older male car-
riers were not associated (by adult neurologists) with a
childhood disorder (fragile-X syndrome) that lacks a
neurodegenerative component and affected a different
group of individuals. The mothers of children with frag-
ile-X syndrome provided the key to this association.

While their children were being seen in clinics for prob-
lems related to fragile-X syndrome, mothers often ex-
pressed concerns about their own (premutation carrier)
fathers, who were experiencing problems with hand
tremor (loss of daily living skills involving their hands)
and unsteady gait (frequently associated with serious
falls). When we began to evaluate these male carriers
(grandfathers of the probands with fragile-X syndrome),
it became evident that they all had a common neuro-
logical picture, consisting principally of intention tremor
and gait ataxia. We have now seen 64 male carriers (aged
�50 years) with FXTAS, and, although at least one-
third of all male carriers will develop the symptoms of
FXTAS (Jacquemont et al. 2004b), there is significant
variability in the progression of neurological dysfunc-
tion; some cases remain stable for years or decades,

whereas others progress rapidly and develop dementia
within 5–8 years of receiving their diagnosis (Jacque-
mont et al. 2004a).

Impact of FXTAS on Genetic Counseling

When evaluating families with fragile-X syndrome,
questions should address the presence of neurological
problems in all relatives who are at risk for the FMR1
premutation. Because of the frequency of learning or emo-
tional problems among those with the premutation, we
recommend FMR1 DNA testing in siblings of a child with
fragile-X syndrome and in other family members at risk
of carrying the mutation (Gane and Cronister 2002). In
those identified with a premutation, more detailed de-
velopmental testing is recommended (Hagerman 2002b;
Jacquemont et al. 2004a). Many of the symptoms—in-
cluding anxiety, attention deficit hyperactivity disorder,
or obsessive compulsive disorder—experienced by pre-
mutation carriers, particularly males, respond well to
therapy and psychopharmacological interventions (Hag-
erman 2002a). Families must be counseled about the risk
of developing neurological symptoms in later adulthood
(�30% of males 150 age years) (Jacquemont et al.
2004b). For many, neurological symptoms will not arise
until their 70s or 80s. The onset of symptoms may be
related to allelic variations in other genes that interact
with FMR1 mRNA. The prospect of developing FXTAS
in later life should not preclude the testing of siblings
for the premutation, since many children with premu-
tation alleles experience emotional or behavioral prob-
lems or learning difficulties in childhood and require
treatment for those forms of clinical involvement. For
older carriers with neurological symptoms, magnetic res-
onance imaging and detailed neurological testing are
warranted to detect tremor, ataxia, neuropathy, and cog-
nitive and/or emotional problems. Treatment can often
be helpful for many of these symptoms, as discussed by
Jacquemont et al. (2004a).

Molecular Correlates of Clinical Involvement
in the Premutation Range

The discovery that FMR1 mRNA levels are elevated by
as much as fivefold in the peripheral blood leukocytes of
premutation carriers (Tassone et al. 2000a, 2000c; Ken-
neson et al. 2001; Tassone and Hagerman 2003) pro-
vided direct biochemical evidence of altered FMR1 gene
expression in the premutation range, thus establishing a
molecular correlate for the observations of clinical in-
volvement among premutation carriers. Despite the in-
creased mRNA levels, FMRP levels gradually decrease
with increasing CGG-repeat length within the premu-
tation range (Tassone et al. 2000a, 2000c; Kenneson et
al. 2001). Reduced FMRP production in the premuta-
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Figure 1 Relative in vivo translational efficiencies of FMR1 5′

UTRs (expressed per mRNA molecule), plotted as a function of the
number of CGG-trinucleotide repeats. The FMR1 5′ UTRs were placed
upstream of a reporter (firefly luciferase) coding sequence, and the
resulting CMV-promoter constructs were transfected into either SK-
N-MC cells (neuroepithelial origin) (black circles) or 293 cells (fetal
kidney epithelium) (gray circles). The graph is normalized to 0 CGG
repeats. Figure adapted from Chen et al. (2003).

tion range is now known to be a consequence of reduced
translational efficiency of the FMR1 mRNA in cells that
harbor premutation alleles (Primerano et al. 2002), a
finding that extends the previous observation of reduced
translation of FMR1 mRNA from full mutation alleles
(Feng et al. 1995).

A more recently described effect of the premutation
CGG expansion is its influence on the position of the
start of transcription, both in neural and nonneural cells
(Beilina et al. 2004), with increasing CGG-repeat num-
ber associated with an upstream shift of the start site.
Thus, the CGG repeat appears to be modulating not
only the level of FMR1 gene activity (i.e., FMR1 mRNA
level) but also start-site selection. This last observation
demonstrates that mRNA derived from premutation al-
leles differs in at least two respects from the mRNA
produced by normal alleles (abnormal CGG repeat and
longer non-CGG 5′ UTR extension).

Quantification of FMRP levels in the premutation
range has taken on added significance, in view of the
neurodevelopmental, reproductive, and neurological
forms of clinical involvement that are associated with
premutation alleles of !100 CGG repeats. One signifi-
cant difference between the study of Kenneson et al.
(2001) and those of Tassone et al. (2000a, 2000c) was
in the relationship between FMRP level and CGG-re-
peat number. Kenneson et al. (2001), utilizing western
blot analysis to quantify FMRP levels in cultured lym-
phoblastoid cells, observed a progressive reduction in
FMRP level that commences near the lower bound of
the premutation range. By contrast, the immunocyto-
chemical approach utilized by Tassone et al. (2000a),
which determines the percentage of cells that are posi-
tive-staining for FMRP by use of an anti-FMRP anti-
body (Willemsen et al. 1995, 1997), observed significant
reductions in the percent of FMRP-positive lymphocytes
only for larger premutation alleles (1100 CGG repeats).
Although the western blot approach lacks the sensitivity
of the immunocytochemical method to detect reduced
FMRP levels in small samples of peripheral blood, it is
the more quantitative of the two measures, given suf-
ficient numbers of cells. Thus, the observations of Ken-
neson et al. (2001) suggest that dysregulation of protein
synthesis may occur for FMR1 alleles that are within
the gray-zone range.

Additional evidence for a deficit in translation for only
slightly expanded CGG repeats has been provided by
the recent study by Chen et al. (2003). Using an ex-
pression system in which the FMR1 5′ UTR and a lu-
ciferase reporter are placed downstream of a strong (cy-
tomegalovirus [CMV]) promoter, we examined the
efficiency of translation of the reporter gene as a func-
tion of the number of CGG repeats (0–99) in the 5′

UTR. For both neural (SK) and nonneural (293) cells,
translational efficiency was reduced, relative to 30 CGG

repeats, even for mRNAs having repeat elements near
the gray-zone (42 repeats) and low-premutation (60 re-
peats) ranges (fig. 1). Although this study used a strong
(CMV) promoter and thus only indirectly addressed the
issue of the translational efficiency of the native gene,
the observed reduction in translational efficiency for
even small repeat expansions underscores the need for
better quantitative methods for determining FMRP lev-
els in peripheral blood leukocytes within the premuta-
tion range.

An RNA Gain-of-Function Model for FXTAS

One of the striking features of FXTAS is that it appears
to be confined to the premutation range; we have not
observed the characteristic features of intention tremor
and gait ataxia among the older adult patients with a full
mutation whom we have seen clinically, nor have there
been published reports of an increased incidence of com-
bined tremor and ataxia among adult males with full-
mutation alleles. The apparent lack of cases among
males with full-mutation alleles who produce little or no
FMRP argues against a protein-deficiency model for
FXTAS; that is, the mild reductions in FMRP observed
for some patients with FXTAS who harbor premutation
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Figure 2 Schematic representation of our working hypothesis
for an RNA toxic gain-of-function model for FXTAS. In this model,
(hypothesized) specific protein interactions with the 5′ UTR of the
FMR1 mRNA are altered as a consequence of expansion of the CGG
repeat; this model is analogous to the RNA gain-of-function model
proposed for myotonic dystrophy (see the “An RNA Gain-of-Function
Model for FXTAS” section). In the premutation range, the expanded
CGG repeat would lead to excess binding of one or more proteins
(pink spheres), owing to (i) increased mRNA copy number, (ii) in-
creased number of CGG repeats (increased CGG molarity), and/or (iii)
altered secondary/tertiary RNA structure. This excess binding depletes
the proteins from the cellular pool, resulting in the loss of their normal
functions in other regulatory processes. The sequestration process
would also trigger the accumulation or abnormal processing of pro-
teins by the proteasomal degradation pathway, leading to inclusion
formation with associated ubiquitinated proteins, proteasomal sub-
units, and stress-response (HSP) proteins. In the full-mutation range,
altered protein-RNA interactions do not occur in the absence of FMR1
mRNA but could occur in the case of a full mutation allele that remains
transcriptionally active. Image inset, Inclusion within an isolated neu-
ral cell nucleus (frontal cortex) from a patient with FXTAS; the in-
clusion is stained with fluorescent antiubiquitin antibody, and the nu-
cleus is counterstained with DAPI.

alleles are unlikely to be causative of the tremor/ataxia
syndrome. Thus, FXTAS is mechanistically distinct from
fragile-X syndrome and affects a different group of
individuals.

The presence of elevated levels of abnormal (expanded
CGG repeat) FMR1 mRNA, coupled with the absence
of FXTAS cases in the full-mutation range, led us to

propose an RNA “toxic gain-of-function” model for
FXTAS (Hagerman et al. 2001; Greco et al. 2002; Jac-
quemont et al. 2003) in which the FMR1 mRNA itself
is causative of the neurological disorder (fig. 2).

Our hypothesis was based on the well-characterized
RNA gain-of-function model proposed for myotonic
dystrophy (MIM 160900 and MIM 602688), in which
either expansion of a CUG repeat in the 3′ UTR of the
DMPK (MIM 605377) mRNA (DM1) or expansion of
the CCUG repeat in the first intron of the ZNF9 (MIM
116955) gene (DM2) leads to sequestration of one or
more C(C)UG-binding proteins (see reviews by Finsterer
[2002], Mankodi and Thornton [2002], and Ranum and
Day [2002]). This gain-of-function effect has already
been demonstrated for DM1 by placing an expanded
CTG repeat within the noncoding region of a heterolo-
gous gene in a transgenic mouse (Mankodi and Thorn-
ton 2002) or within a transgene containing a human
DMPK gene with an expanded CTG repeat (Seznec et
al. 2001); both forms of transgenic mice developed myo-
tonia. There is a further parallel between FXTAS and
myotonic dystrophy, namely, the presence of intranu-
clear inclusions in FXTAS (Greco et al. 2002) and nu-
clear foci in both DM1 and DM2 (Taneja et al. 1995;
Davis et al. 1997; Fardaei et al. 2002; Mankodi and
Thornton 2002). Toxic RNA gain-of-function mecha-
nisms have also been proposed for several of the spino-
cerebellar ataxias (SCAs)—types 8, 10, and 12—and
Huntington disease–like type 2 (HDL2) (reviewed by
Ranum and Day [2002]). The possibility of an RNA-
based pathogenesis for POF among female carriers of
premutation FMR1 alleles has also been considered
(Conway et al. 1998).

Taken together, the myotonic dystrophies, DM1 and
DM2, along with SCAs 8, 10, and 12 and HDL2, provide
ample precedent for an RNA gain-of-function mecha-
nism for FXTAS. Furthermore, the absence of cases of
FXTAS among older adult males with full mutation has
largely ruled out FMRP deficiency as the basis for
FXTAS. However, the RNA-based model does make the
prediction that a small subgroup of adults with full-
mutation alleles, those whose FMR1 gene continues to
produce elevated FMR1 mRNA levels (Tassone et al.
2000b, 2001), remains at risk for developing tremor
and/or ataxia.

To test the RNA gain-of-function hypothesis for
FXTAS, Willemsen et al. (2003) utilized a “knock-in”
mouse in which the endogenous CGG element had been
replaced with an ∼100 CGG-repeat element within the
Fmr1 gene. Although the mice did not demonstrate neu-
rological abnormalities (up to 72 wk), they did dem-
onstrate the presence of ubiquitin-positive intranuclear
inclusions in broad distribution throughout all of the
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brains examined. The presence of inclusions in the ex-
panded-CGG–repeat mouse that has normal levels of
FMRP provides further evidence against a protein-de-
ficiency model for FXTAS. More recently, Jin et al. (2003)
made similar findings in a Drosophila model in which
an expanded CGG element (90 CGG repeats) was
placed in a heterologous reporter gene; selective over-
expression of the gene containing the expanded CGG
repeat (but not a smaller repeat) in the Drosophila eye
led to both inclusion formation and neurodegenerative
changes in the eye. Thus, the CGG repeat itself, as RNA,
may well be sufficient to induce the neuropathic changes
that have been proposed to be causative of FXTAS.
Although the dfxr gene does not itself possess a CGG-
repeat element (Schenck et al. 2002), the putative RNA-
based disease mechanism is likely to have little, if any-
thing, to do with the function of the FMR1 (or dfxr)
gene product.

It should be noted that the inclusions in Drosophila
are quite different in form (electron dense) and distri-
bution (substantial cytoplasmic distribution) than those
found in either patients with FXTAS or the knock-in
mouse (exclusively nuclear), perhaps reflecting differ-
ences in the sets of proteins that interact with (and lo-
calize) RNA species possessing the CGG repeat. This
caveat notwithstanding, the Drosophila model holds
promise for identifying potential homologues for pro-
teins that may be interacting with the CGG-repeat ele-
ment within the 5′ UTR region of the human FMR1
mRNA.

FXTAS Represents a New Class of Inclusion Disorder

The neuropathology associated with FXTAS has been
presented and reviewed elsewhere (Greco et al. 2002;
Hagerman et al. 2003b); its principal features include
general cerebral and cerebellar atrophy, spongiosis of
white matter and the middle cerebellar peduncles, Pur-
kinje-cell drop out, and neuronal and astrocytic intra-
nuclear inclusions. This last feature, the presence of
intranuclear inclusions in broad distribution through-
out the cerebrum and brain stem, is the most consistent
finding associated with FXTAS, found in all nine brains
of patients with FXTAS examined to date (Greco et al.
2002; Hagerman et al. 2003a, 2003b).

The inclusions are positive for ubiquitin by immu-
nocytochemical staining; however, the presence of ubi-
quitin is quite widespread among various inclusion dis-
orders and probably reflects a general degradative re-
sponse to the inclusions themselves or the proteins in-
volved in the underlying pathology. What is more im-
portant is that the intranuclear inclusions associated
with FXTAS are immunocytochemically negative for
staining with either anti-tau– or anti-a–synuclein an-
tibodies (Greco et al. 2002; Hagerman et al. 2003b),

further distinguishing the current inclusion disorder
from the cytoplasmic inclusions found in the tauopa-
thies (e.g., Pick disease) or synucleinopathies (e.g., Lewy
body dementias and Parkinson disease [PD]). The in-
clusions associated with FXTAS are also polyglutamine
negative, which distinguishes them from the morpho-
logically similar intranuclear inclusions found in the
CAG-repeat disorders (Cummings and Zoghbi 2000) or
the (rare) neuronal intranuclear inclusion disease (Mi-
chaud and Gilbert 1981; Kimber et al. 1998; Zannolli
et al. 2002). Last, the inclusions are distinct from those
found in the phenotypically similar condition, multiple-
system atrophy (MSA) (Gilman et al. 1999), both in
their location (exclusively nuclear, neuronal, and astro-
cytic vs. cytoplasmic and oligodendrocytic) and in the
absence of a-synuclein in the FXTAS-associated inclu-
sions (present in MSA). The characteristic features of
the intranuclear inclusions thus appear to establish
FXTAS as a new class of inclusion disorder, and these
inclusions appear to be pathognomonic for FXTAS (see
the appendix).

The distinct features of the intranuclear inclusions in
FXTAS undoubtedly reflect a novel mechanism for their
genesis, as part of the underlying molecular pathology
leading to FXTAS. If, as now seems likely, the molecular
basis of FXTAS is a toxic gain of function of the abnormal
(premutation) FMR1 mRNA, then it is possible that the
mRNA is playing a direct role as a nucleation center
for as-yet-unidentified proteins, again by analogy with
DM1/2. Identification of FMR1 mRNA within the in-
clusions would be helpful in this regard, and such stud-
ies are currently under way. But there is another in-
triguing aspect to the inclusions that also may address
pathogenic mechanism; namely, why the inclusions in
humans are present in neurons and astrocytes but (ap-
parently) not in oligodendroglia and why the inclusions
are present in the nucleus rather than the cytoplasm. In
this regard, differences in the location of the inclusions
between human and mouse (exclusively nuclear) and
the fly (substantial cytoplasmic component) may reflect
a species difference in the proteins involved with han-
dling the mRNA itself. Moreover, differences between
the human (both clinical and neurodegenerative phe-
notypes) and the mouse (no evident neurological or neu-
rodegenerative features discovered thus far) may be re-
lated to the absence of astrocytic inclusions in the latter,
although neurological dysfunction may appear in the
mice upon further aging or may depend on strain-de-
pendent genetic modifiers. Finally, as a model system
capable of generating both inclusions and neurodege-
neration, the fly model may prove to be an important
tool for understanding the mechanistic details under-
lying inclusion formation.
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Contribution of FXTAS to Neurological Dysfunction
among Older Adults

In the absence of large-scale epidemiological studies of
the prevalence of FXTAS in the general population, it is
difficult to gauge the contribution of the premutation
allele to the movement disorders of aging. Recent esti-
mates of the penetrance of neurological dysfunction
among male carriers of premutation alleles suggest that
at least one-third of the males aged 150 years, ascer-
tained through analysis of families of children with frag-
ile-X syndrome, will develop the neurological features of
FXTAS (Smits et al. 2002; Rogers et al. 2003; Jacque-
mont et al. 2004b), and that the percentage of affected
males appears to increase with age (Jacquemont et al.
2004b). On the basis of a carrier frequency of ∼1/813
(95% CI 1/527 to 1/1,781) for males in the general popu-
lation (Dombrowski et al. 2002), the expectation for the
prevalence of probable FXTAS (combined intention
tremor and ataxia), absent biasing influences, would be
∼1/3,000 for males aged 150 years (∼1/10,000 males of
all ages) in the general population, subject to a nearly
threefold uncertainty, on the basis of the CIs of the preva-
lence figure.

The projected prevalence estimate for FXTAS is sub-
stantially less than the reported prevalence of 1%–5%
for essential tremor (ET) in older adults (Louis et al.
1995; Brin and Koller 1998; Dogu et al. 2003), although
it does approach the combined prevalence of ∼1/2,000
quoted for all forms of late-onset ataxia (National Ataxia
Foundation). This latter figure is largely reflective of spo-
radic ataxias, with hereditary (dominant and recessive)
ataxias accounting for only ∼10% of the total preva-
lence (Polo et al. 1991; Filla et al. 1992; Leone et al.
1995; Pujana et al. 1999; Mori et al. 2001; van de
Warrenburg et al. 2002).

In separate assessments of the prevalence of premuta-
tion alleles within populations with movement disorders,
four clinical cohorts were screened for carriers of pre-
mutation alleles among cases of sporadic ataxia or ET;
none of these studies was tied to ascertainment through
families known to have fragile-X syndrome. In a screen
of 59 males presenting with neurological disorders in-
volving ataxia and originally referred for SCA testing,
Macpherson et al. (2003) found 3 (5%) carriers of pre-
mutation or gray-zone alleles (87, 66, and 51 CGG
repeats). This finding is highly significant ( )P ! .0001
for association between carrier status and ataxia. It is
interesting that one of the three patients (with 66 re-
peats) had a childhood onset of ataxia, which has not
been observed in any of the studies of FXTAS among
families with fragile-X syndrome. This individual may
have a different origin of his neurological dysfunction,
with the premutation allele only an incidental finding;
alternatively, the earlier onset may reflect a synthetic/

epistatic effect of the premutation allele and one or more
additional genes. In a second screen of males with spo-
radic ataxia who were originally referred for SCA test-
ing, Di Maria et al. (2003) found 2 (7%) carriers with
premutation alleles (84 and 86 CGG repeats) among 28
males aged 150 years.

In two screens of older adult males presenting with
ET, no premutation carriers were found among 40 males
(Garcia Arocena et al. 2003) or among 114 males (Di
Maria et al. 2003). This result is not unexpected, in view
of the high prevalence of ET in the general population,
wherein only 1%–2% of ET cases among older males
would be expected to be associated with premutation
alleles. It is interesting that, in a separate clinical ob-
servation, two subjects who initially received the di-
agnosis of ET were later found to be carriers of pre-
mutation alleles (Leehey et al. 2003). Although no
conclusions regarding prevalence can be drawn from
this last observation, it does underscore the fact that
cases of premutation-associated tremor can be present
within clinical populations who have received other
neurological diagnoses.

Taken together, the pilot screening studies for carriers
of premutation (FMR1) alleles among cases of ataxia,
a major feature of FXTAS, suggest that �5% of cases
of sporadic ataxia among older adult males may be
attributable to the effects of premutation alleles. On the
basis of the projected prevalence of males with FXTAS
in the general population, one might have expected that
a larger fraction of those with sporadic ataxia would
have had premutation alleles. There are at least three
possible explanations for this difference, all requiring
further examination through systematic, large-scale epi-
demiological studies of both fragile-X–carrier popula-
tions and of populations with movement disorders.

Ascertainment Bias

The vast majority of cases of FXTAS identified thus
far have been ascertained through families with a known
proband (with fragile-X syndrome), with the affected car-
riers typically (although not exclusively) being the grand-
fathers of the proband. The distribution of premutation
alleles among transmitting males is likely to be biased
toward larger CGG-repeat lengths, since larger alleles,
when transmitted through daughters, are more likely to
give rise to full-mutation alleles and an affected proband.
This form of allele-size bias could potentially lead to an
overestimation of the population prevalence of FXTAS,
if the penetrance of neurological dysfunction increases
with increasing CGG-repeat size, since our use of the
general population prevalence of 1/813 (Dombrowski et
al. 2002) assumes that there is neither allele-size bias nor
allele-size dependence of the penetrance of the neuro-
logical dysfunction. However, we have not observed a
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strong CGG-repeat–size dependence of the penetrance,
severity, or age at onset of FXTAS, with the preponder-
ance of alleles falling within the range of 55–100 CGG
repeats (Jacquemont et al. 2004a). A second (as-yet-hy-
pothetical) form of ascertainment bias (in the opposite
direction) would arise as a consequence of reduced fit-
ness of males with large premutation alleles, perhaps
owing to a reduced propensity to marry and have chil-
dren if they are significantly learning disabled. The de-
gree to which this effect is operating is difficult to assess,
although we suspect that it has only a minor influence
on prevalence estimates. We do see alleles with as many
as 160 CGG repeats within our population of trans-
mitting males with FXTAS (Jacquemont et al. 2004a);
a relatively small fraction of premutation alleles in males
is comparable to or exceeds this size (only ∼8% of male
premutation alleles with 1140 CGG repeats [Zhong et
al. 1995]).

Incorrect Initial Diagnosis and Classification

For those individuals whose level of neurological dys-
function was severe enough to warrant clinical evaluation,
the majority received neurological diagnoses that would
not have been counted among cases of sporadic ataxia.
In the survey by Rogers et al. (2003), four male carriers
had received a diagnosis of PD (a fifth carrier possibly
had PD), with additional diagnoses (one each) of Alz-
heimer disease, transient ischemic attack, and motor neu-
ron disease; only one individual received a diagnosis of
cerebellar ataxia. In the study by Berry-Kravis et al.
(2003), four of seven male carriers had previously re-
ceived neurological diagnoses, two with atypical PD and
two with ET. Although the range of previous diagnoses
has not been addressed in a systematic fashion, the com-
mon feature of parkinsonism among patients with
FXTAS (Hagerman et al. 2001; Berry-Kravis et al. 2003;
Jacquemont et al. 2003) has led to a frequent diagnosis
of PD or an atypical variant to account for cerebellar
findings. In light of these findings, we suspect that most
cases of FXTAS have been classified as neurological dis-
orders that would not be counted among cases of ataxia.

Absence of a Clinical Presentation

Many of the cases of neurological dysfunction (prob-
able FXTAS) identified through probands with fragile-X
syndrome (Berry-Kravis et al. 2003; Jacquemont et al.
2003, 2004b; Rogers et al. 2003) were not of sufficient
clinical severity to warrant a detailed neurological as-
sessment and therefore would not have been counted
among cases of sporadic ataxia (or ET). In fact, the gait
ataxia and/or action tremor experienced by some car-
riers had been considered “normal aging” or had been
believed to be the sequelae of strokes or microvascular
disease. In this regard, a powerful advantage of genetic

association (e.g., the FMR1-FXTAS association) is the
ability to identify those features of aging that are not
normal but that are part of a specific process of neu-
rological dysfunction. However, in the absence of such
a genetic association, it is very difficult to properly iden-
tify cases with only mild neurological involvement; many
additional cases of probable FXTAS have fallen into this
category.

A Maturing Perspective

The identification of at least three forms of clinical in-
volvement among carriers of premutation alleles (FXTAS,
POF, and learning disabilities/autism-spectrum disorder),
coupled with the identification of specific biochemical
abnormalities within the premutation range, has fun-
damentally changed the way we view this group of in-
dividuals. This maturing perspective has moved us from
a categorical to a more nuanced view of the way the
FMR1 gene contributes to clinical involvement, much as
our perspective on the range of clinical involvement with
other disorders, such as cystic fibrosis or Rett syndrome,
has broadened following the discoveries of the CFTR
and MECP2 genes. With the FMR1 gene, our perspective
has matured in another—more literal—way. It is now
clear that the same gene can give rise to both the most
common heritable form of cognitive impairment (a dis-
order of childhood) and an important neurological dis-
order (a disease of aging), and it does so by what appear
to be completely distinct disease mechanisms.

With respect to FXTAS, what is needed now is a con-
certed effort to better define the disorder through large-
scale epidemiological studies that address the contri-
butions of premutation alleles to various categories of
neurological disorders that involve parkinsonism with
cerebellar and autonomic dysfunction (e.g., atypical PD
and multiple-system disorders). At the same time, a bet-
ter understanding of the molecular underpinnings of
FXTAS should shed light on common mechanisms in
other neurodegenerative diseases, which will lead to
treatments, for those disorders, that are both more ef-
fective and more specific to the molecular dysfunction.
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Appendix

Diagnostic Criteria for FXTAS (Mandatory Criterion:
FMR1 Allele Size of 55–200 CGG Repeats)

1. Definite:
A. one clinical major criterion (clinical major cri-

teria: intention tremor and gait ataxia; clinical
minor criterion: parkinsonism) and

B. one radiological major criterion (radiological ma-
jor criterion: symmetric white-matter lesions in-
volving the middle cerebellar peduncles; radio-
logical minor criteria: white-matter lesions in
cerebral white matter, moderate-to-severe gen-
eralized atrophy) or

C. presence of inclusions (the presence of intranu-
clear—neuronal and astrocytic—inclusions has
been added as an additional criterion for
FXTAS, on the basis of examination of post-
mortem brain tissue).

2. Probable:
A. two clinical major criteria or
B. one radiological major criterion and
C. one clinical minor criterion.

3. Possible:
A. one clinical major criterion and
B. one radiological minor criterion.
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